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ABSTRACT
Globally, the prevalence of disabilities among stroke survivors ex-
ceeds 80%, with upper-limb movement impairments affecting over
85% of individuals. To address this challenge, motor imagery (MI)
based brain-computer interface (BCI) has emerged as a promising
approach for translating the imagined motor intentions of individ-
uals into control signals for external devices. Electroencephalog-
raphy (EEG) signals are commonly used in MI-BCIs due to their
non-invasiveness, portability, high temporal resolution, and afford-
ability. The present study utilized the publicly available Electroen-
cephalography Motor Movement/Imagery Dataset (EEGMMIDB),
comprising 64-channel EEG recordings from 109 participants sam-
pled at 160 Hz. The aim was to classify between the opening/closing
of palms and feet using the Long Short Term Memory (LSTM) net-
work directly on cleaned EEG signals, bypassing traditional feature-
extraction methods that are computationally intensive and time-
consuming. We achieved an average classification accuracy of 71.2%
across subjects by tuning the hyperparameters related to epochs
and segment length. This research emphasizes the efficacy of deep
learning approaches in generating robust control signals for predict-
ing motor intentions using EEG signals, eliminating the necessity of
laborious feature extraction methods. By leveraging deep learning
models, MI-BCI devices can advance neuro-rehabilitation, espe-
cially in stroke, by providing motor assistance, enabling patients to
execute movements solely through the power of imagination.
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1 INTRODUCTION
Stroke, with an annual mortality rate of approximately 5.5 million
and accounting for 116.4 million DALYs (disability-adjusted life-
years), is a prominent global health concern and ranks as the second
leading cause of death worldwide [11, 13]. Stroke patients who have
survived stroke often exhibit upper limb hemiparesis, i.e., partial or
complete paralysis of the upper limb on one side of the body [23].
Previous studies have demonstrated that a significant proportion
of about 55-75% of stroke patients with hemiplegic arm experience
persistent impairment in arm movement activities even after three
to six months of rehabilitation [18]. These findings emphasize the
necessity for the development of enhanced rehabilitation strategies
to address the specific needs of stroke patients.

The current approach to stroke rehabilitation involves adminis-
tering conventional therapy practices, including repetitive physical
motor assistance or occupational therapy to stroke patients [12].
However, these methods overlook the crucial factors of patient
engagement and motivation, which are essential for effective motor
recovery [6]. Therefore, there is a need for advanced therapeutic
approaches that can expedite the recovery process while simultane-
ously providing motor assistance to patients. Motor Imagery (MI)
enables individuals with hemiplegia, paraplegia, and tetraplegia
to utilize their ability to imagine motor movements [10]. MI pro-
motes neuroplasticity [21] by activating the same brain regions as
in actual motor execution and planning, thus stimulating neuro-
plasticity [39] in the motor cortex. BCIs are artificial devices that
employ an unconventional approach to establish direct commu-
nication between neuronal electrical signals and external devices
circumventing the traditional pathway from the central nervous
system to the muscular system for motor movement [33]. MI-BCI
systems not only harness the power of neuroplasticity but also
introduce a dynamic, interactive, and adaptable system that can
be personalized for each patient. These systems offer a means to
restore motor function for stroke patients by providing a direct
pathway to translate their motor imaginations into control signals
for external devices, such as prosthetic limbs and robotic arms. Var-
ious non-invasive methods are used to record brain activity, such
as EEG (Electroencephalography), fNIRS (functional near-infrared
spectroscopy), etc. We prefer using EEG as they offer a high tem-
poral resolution, are non-invasive, and are cost-effective [19, 30].
EEG-BCI systems are used to classify MI signals, which are rhyth-
mic oscillations of motor movement captured over the sensorimotor
cortex within the mu and beta frequency bands [42]. MI-EEG-BCIs
provide real-time feedback to users about their brain activity, en-
abling self-modulation for improved motor function, control, and
coordination [28].
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Study Movement Type Features Classifier Accuracy

Athif et al. [3] Left/Right Hands/Feet WaveCSP
LDA 63.4%
SVM 63.4%
KNN 63.5%

Paul et al. [31] Left/Right
10 movements FBCSP SVM 91.5%

Yi et al. [43] Compound Limb Multi-sTRCSP SVM 70.0%

Table 1: Comparison with relevant research in MI-BCI

Decoding movement-related brain activity and underlying brain
representations in response to environmental stimuli and user de-
sires is a challenging task. Studies focused on developing MI-BCI
systems have predominantly been conducted on healthy partic-
ipants [20, 41]. However, the methodologies employed and the
results obtained are highly adaptable and applicable to a broader
audience, underscoring their relevance and transferability. Early
research has focused on classifying left vs. right hand/foot or di-
rection of hand movement [5]. Recent research has focused on de-
ploying various Machine Learning and Deep Learning techniques
to improve accuracy score [2]. Advancements in deep learning
techniques, such as using Convolutional Neural Networks (CNNs),
have shown considerable results by precisely decoding and visual-
izing the spatial dynamics of EEG signals [9, 36]. Hongli et al. [26]
have explored using a combined architecture of CNN and Recur-
rent Neural Network (RNN) to capture both temporal and spatial
characteristics of EEG data effectively. Although promising, the
combination has certain limitations; for example, the paper did not
assess their model with Independent Identically Distributed (i.i.d.)
samples. The model considered many parameters making it com-
putationally heavy. Researchers have also used feature engineering
and machine learning approaches to classify brain states. They
have used features such as power spectral density [8] and spectral
coherence [34] as inputs to classical machine learning classifiers for
the task. The accuracy of MI-BCI systems is affected by challenges
such as low signal-to-noise ratio (SNR), and neuroplasticity [37].
Additionally, MI-EEG signals represent complex patterns in the
brain signals, which may not be easily captured by linear classi-
fiers. Individual differences, such as the ability to precisely imagine
motor movements or MI aptitude, also affect Brain Machine Inter-
face (BMI) control. High aptitude BMI users reflected higher MI
accuracies analyzed using behavioral differences in kinaesthetic
and visual MI [29]. Limited literature exists on the classification
of motor imagery involving both hands and feet, while there has
been extensive research on classifying the left/right hand and foot
movements. A combination of Wavelet Common Spatial Patterns
(WaveCSP) for feature extraction and Linear Discriminant Analysis
(LDA), Support Vector Machine (SVM), and k-Nearest Neighbors
(KNN) for classification of left/right hand has achieved an average
accuracy of 63.40%, 63.40%, and 63.50%, respectively [3]. Another
study achieved an accuracy of 91.50% for classifying left/right hand
with ten movements using Filter Bank Common Spatial Patterns
(FBCSP) for feature extraction and SVM as a classifier [31]. However,
despite the high accuracy, the model’s compatibility and general-
izability are considerably low for training and testing on large
datasets. MI-BCI devices, thus, regularly require intensive updation
of algorithms to comprehend motor intentions and reliably control
external devices like prosthetic limbs. Previous studies [27] have

demonstrated the efficacy of LSTM models in analyzing dynamic
temporal and subject-dependent data, such as EEG signals. Our
LSTM model, with its ability to model non-linear relationships,
captures intricate temporal dynamics and has a higher capacity to
learn and represent these complex patterns.LSTM model owing to
its excellent generalization abilities [40], has been used in this study
to ensure robust generalization across our extensive dataset of 109
participants and significantly capture broad patterns. While tradi-
tional feature extraction techniques have been widely used, they
may not always be the optimal choice. These methods often rely on
manual design and domain knowledge to define relevant features,
which can be time-consuming, labor-intensive, and task-specific.
However, our LSTM model offers an inherent property of extensive
feature engineering steps, which facilitates time-effectiveness [42].

In this study, we also explored various combinations of feature
extraction and classification techniques for binary classification.We
employed three distinct methods for the classification task, namely
Common Spatial Patterns (CSP) with LDA, CSPwith Random Forest,
and CSP with SVM.

2 METHODOLOGY
In this section, we take an in-depth look at the dataset, feature ex-
traction and classification algorithms, and the experiment analysed
in the study.

2.1 Dataset Information
In this study, we used the Electroencephalography Motor Move-
ment/Imagery Dataset (EEGMMIDB), a publicly available dataset
hosted on PhysioNet [14]. A BCI2000 system [35] was used to
collect and synchronize the 64-channel EEG recordings using the
internationally recognized 10-20 system for electrode placement.
The data was collected for 109 participants at a sampling frequency
of 160 Hz when they performed four different tasks, which are
mentioned below:

(1) Task 1: Target appears on the left or right side of the screen-
Subject opens and closes the corresponding hand. The sub-
ject relaxes.

(2) Task 2: The subject imagines performing task 1.
(3) Task 3: If the target appears on the top, the subject opens

and closes both hands; if the target appears at the bottom,
the subject opens and closes both feet. The subject relaxes.

(4) Task 4: The subject imagines performing task 3 as depicted
in figure 1.

Two baseline runs lasting for about one minute each with eyes
open and closed were performed at the beginning of the experiment.
Subsequently, three experimental runs of two minutes each, of the
four tasks were performed in a task sequential order as listed above.
Each subject performed 14 such trials, and each task lasted for at
least 4 seconds. The order can be summarised as given in figure 1
below.

This dataset was particularly chosen as it records data from
a large number of participants (109). Typically, stroke rehabilita-
tion experiments include an average of 15 participants (including
healthy and stroke-affected individuals). Badia et al. [20] have stud-
ied the promotion of cortical neuroplasticity using VR-based-MI-
BCIs on nine healthy participants. Another study by Achanccaray
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Figure 1: Description of each experimental task

[1] has explored improving the MI-BCI approach for stroke using
different types of neurofeedback on twenty healthy individuals. A
study by Škola et al. [38] has used embodied VR to enhance the
efficacy of MI-BCIs on 30 healthy volunteers.

2.2 Machine Learning Approach
We used CSP to extract features and fed these features to machine
learning classifiers such as Random Forest (LDA) and SVM from
sklearn python library [32]. CSP is widely used for feature extrac-
tion in the MI-EEG domain. It spatially discriminates common
features from the recorded brain activity to maximize variance
for one class (task-related activity) while minimizing variance for
another class (unrelated activity, noise). The classifiers used are
mentioned below:

2.2.1 LDA. LDA is a supervised learning dimensionality reduction
technique that maximizes the variance between two classes through
a linear transformation. It classifies the data using a decision rule
like a threshold value based on discriminant functions [4].

2.2.2 Random Forest Classifier. Random Forest classifiers are fa-
mous learning ensemble machine learning methods that randomly
select features and training subsets from the data to give a final
prediction. The ultimate prediction is based on the majority of votes
gained by a particular class collectively from all decision trees [7].

2.2.3 SVM. SVM is a supervised-learning-based discriminative
classifier that deals with high-dimensional feature space data. It fits
the best hyperplane to classify data into binary or multiple classes
[17].

2.3 LSTM Approach
In this study, we explored various feature extraction and classifica-
tion methods, presented in Table 2, with a particular focus on the
RNN-based Long Short Term Memory (LSTM) classifier [44].

The data was preprocessed and split into training and test sets.
To facilitate convergence, featured data underwent reshaping and
standard scaling. The neural network architecture used in the study
comprised two main layers - an LSTM layer and a linear layer.
The LSTM layer was made up of two LSTM cells, which accepted
fixed-dimension input sequences representing features. A dropout
operation was applied to the output sequence of the LSTM layer
to mitigate overfitting. The output of the LSTM layer at the last
time step was then processed by the linear layer to map it to a

pre-determined number of output classes for binary motor imagery
classification. The model was trained using the training data, opti-
mizing the parameters through an Adam optimizer with a learning
rate of 0.005 and utilizing the cross-entropy loss function. The eval-
uation was conducted on the testing data, with performance metrics
such as accuracy, precision, recall, and F1-score computed. The area
under the receiver operating characteristic curve (AUC) was also
calculated to assess discriminative power. Predictions were com-
pared to true labels, and a comprehensive analysis of the model’s
performance was performed, including the best test accuracy and
AUC scores achieved for each subject. True labels and predicted
labels were aggregated for all subjects to analyze the overall per-
formance.

LSTM-based MI-BCIs offer dynamic and adaptive solutions to
address the challenges posed by diverse stroke severities, patient de-
mographics, and other individual differences [22]. The architecture
of LSTMs captures retaining long-term dependencies and intricate
EEG signal features across varied patient profiles, accounting for
differences like age, gender etc. Their sequential processing cap-
tures patterns across a spectrum of stroke severities. Additionally,
when trained with robust datasets, LSTMs can adapt to individual
factors such as cognitive abilities or prior BCI exposure, ensuring
tailored and efficient stroke rehabilitation.

Additionally, by considering variable-length sequences, themodel
accommodated the inherent variability in the durations of move-
ment imaginations exhibited by individuals. It also efficiently ex-
tracted time-series features and retained spatial information through
essential multi-channel temporal feature correlations from the hid-
den layer. Our model, thus, offers the advantage of end-to-end
learning by learning directly from the raw EEG signals and out-
puts the predicted motor intentions. This eliminates the need for
intermediate feature extraction steps and potentially improves the
overall efficiency of the system.

2.4 Experiment
In the current study, we analyzed the EEG data for task 4, where the
user imagined opening or closing both hands/feet on cue as displayed
in figure 2. We implemented binary classification to distinguish
between the two states, i.e., the intention of opening or closing
of both hands vs feet. We used different combinations of feature
extraction and classification methods as listed in table 2. While
using LSTM, we varied hyperparameters such as the number of
epochs and segment length to obtain the best set of parameters as
given in table 3.

3 RESULTS
In this section, we present the results of the analysis conducted
in this study. We used a combination of feature extraction and
classification algorithms for the machine learning approach. Fur-
thermore, we performed hyperparameter tuning to create a robust
LSTM model to predict the EEG signals for hand movement vs. feet
movement imagination across participants.

We began our analysis by using a combination of CSP and
machine learning algorithms for feature extraction and classifi-
cation, respectively. The initial combination investigated was the
widely used CSP+LDA method for motor imagery classification,
resulting in an accuracy of 59.3%. Subsequently, we employed the
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Figure 2: Task 4 containing a classification of hands vs. feet
movement

CSP+Random Forest approach, which yielded an average test accu-
racy of 55.1%. To further improve motor imagery signal classifica-
tion, the CSP+SVMmethod was employed and achieved a favorable
accuracy score of 66.7%. Notably, both classes were balanced, with
a chance level of 50%. Among these combinations, the CSP+SVM
approach demonstrated the highest accuracy of 66.7%. A summary
of these results is provided in table 2.

Feature Extraction Classifier Mean Test Accuracy

CSP
LDA 59.3%

Random Forest 55.1%
SVM 66.7%

Table 2: This table shows the classification of motor imagery
signals using different feature extraction and classification
methods. The sampling frequency is 160 Hz.

Next, we employed LSTM for end-to-end feature extraction and
classification and explored various combinations of segment lengths
and epochs. The maximum mean accuracy of 71.2% was achieved
with 165 epochs, a segment length of 80 (equivalent to 0.5 sec-
onds of data), and a learning rate of 0.005. The results obtained on
hyperparameter-tuning are shown in the table 3.

4 DISCUSSION
Stroke rehabilitation has seen the evolution of multiple modalities
aiming to improve the quality of life of patients in their Activities
of Daily Living (ADLs) [15]. Traditional approaches such as Phys-
iotherapy [25] and Constraint-Induced Movement Therapy (CIMT)
[24] have been foundational in post-stroke recovery. Innovative
techniques such as Mirror therapy andMI-based BCIs [16] have also
been developed to induce neuroplasticity. However, a common lim-
itation among the traditional modalities is the monotony and lack

Epochs Segment Length Mean Test Accuracy

25 0.5s 66.7%
1s 64.5%

165 0.5s 71.2%
1s 67.1%

Table 3: This table depicts the results of MI classification
using LSTM and hyper-parameter tuning. The sampling fre-
quency is 160 Hz.

of consistent patient engagement, leading to decreased motivation
and often leading the patient to quit the intervention before com-
pletion. In contrast, recent advancements have explored MI-based
BCIs that have emerged as a promising approach in neurorehabili-
tation, particularly for individuals with motor impairments, such as
stroke survivors. The patient-centric individualization, combined
with real-time feedback mechanisms, ensures sustained patient
engagement and motivation, making MI-BCIs a superior and more
efficacious approach in stroke rehabilitation.

In this study, we predicted whether the participants imagined
moving their hands or feet using EEG signals.

We performed binary classification using CSP+LDA, CSP+Random
Forest, and CSP+SVM. We finally used LSTM to classify signals
between the two mental states imagined in task 4 of EEGMMIDB.

In this paper, we achieved an average test accuracy of 71.2%
(chance=50%) by fine-tuning the LSTMmodel for the within-subject
binary classification. We observed that the LSTM model efficiently
captures the temporal dynamics of electrical signals from 64 EEG
channels. This method has shown promising results for supervised
binary-class classification. Our study introduces the novel appli-
cation of LSTM networks for motor imagery classification on a
large EEGMMIDB dataset consisting of 109 participants. The model
provides a more efficient approach that eliminates the need for
computationally intensive feature extraction and allows flexibility
in handling variable-length sequences. Although we obtain good
classification scores using CSP and SVM (66.7%), we recommend us-
ing LSTM as a preferential method of motor imagery classification
because of its low computational cost due to mitigation of feature
engineering and also higher accuracy, i.e., 71.2%.

While our paper emphasized the generalization capabilities of
our model; however, a thorough analysis of the approach to address
variation in patient demographics has not been tested. Therefore,
one of the limitations of this study is that we have not evaluated the
across-subject generalizability of the model, which we aim to tackle
in future works. We also aim to investigate the spatial resolution
aspects of brain representations and functions while also improv-
ing the current model’s accuracy using the EEGMMIDB dataset.
One potential approach to incorporate the spatial characteristics of
recorded EEG data is using Convolutional Neural Networks (CNNs).
By combining CNNs with LSTM, we can capture the spatial and
temporal characteristics of EEG signals, leading to a more compre-
hensive understanding of the underlying brain functions.

The high accuracy achieved by the LSTM model in classifying
motor imagery tasks using EEG signals holds significant poten-
tial for stroke rehabilitation. Moreover, LSTM can be effectively
employed on large datasets to enhance BCI performance and im-
prove user experience. Furthermore, the model’s accuracy can be
harnessed in neurofeedback training, offering real-time feedback
on brain activity and motor recovery. While these findings are
promising, further research and collaboration with healthcare pro-
fessionals are essential to validate and translate these results into
practical applications in real-world stroke rehabilitation settings.
The potential impact of these advancements extends beyond stroke
rehabilitation as well, as they can be adapted to other domains re-
quiring accurate motor imagery classification, such as prosthetics,
assistive devices, and virtual reality-based therapies.
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