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ABSTRACT
Human-computer interaction investigates how people learn from
technology, and how they use technology in everyday life. Re-
searchers have used brain-computer interfaces to understand how
technology can be designed to support human cognition and be-
havior. The most famous and consumer-friendly approach to mea-
suring brain signals is electroencephalography (EEG) due to its
non-invasive, portable, relatively inexpensive, and high temporal
resolution. In this study, we develop machine learning models to
distinguish between the neural oscillations of meditators and non-
meditators. Previous studies have used power spectrum density,
entropy, and functional connectivity to distinguish various medi-
tation traditions. We use EEG data set comprising neural activity
of expert meditators of Himalayan Yoga (HYT), Vipassana (VIP),
Isha Shoonya (SYN), and non-expert control subjects (CTR). We
analyze the data using 13 different machine learning models for
within-subject and cross-subject. We present the results for six
classification conditions for both meditation and mind-wandering.
Features extracted from the mean of 64 EEG time series are fed
into machine learning classifiers during training. We obtain 100%
accuracy for within-subject classification in both meditation and
mind-wandering. In cross-subject analysis, we obtained 18.3% above
chance level in meditation between control and Isha Shoonya, and
similarly above 18% chance level in mind-wandering between con-
trol and Vipassana. We discuss the implications of this result for
the emerging consumer EEG headset facilitating meditation prac-
tice. Our results indicate that personalized models (within-subject)
and generalized models (cross-subject) could guide naive (begin-
ner) practitioners to meditate and aim to modulate brain signals by
practicing to reach the expert level.
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1 INTRODUCTION
Electroencephalography (EEG) signals capture the brain’s electrical
activity and are widely used to study several cognitive processes
[29–31]. Human-computer interaction (HCI) research has used EEG
signals in a variety of ways, such as to measure cognitive load, as-
sess user experience, or study how people interact with technology.
Decades of neuroscientific research have demonstrated that med-
itation has numerous cognitive benefits [7]. However, a novice
meditator may find it difficult to meditate in the beginning, as ev-
eryone does, and due to a lack of positive impact or feedback, may
discontinue the practice [22]. Modern Brain-computer interfaces
use advanced learning techniques such as machine learning and
deep learning algorithms to find neural representations to decode
texts and intentions. Since the brain areas responsible for different
functions are spatially very close, it is difficult to determine which
combination of brain regions are activated at what time points for
decoding intentions. EEG brain recordings suffer seriously from the
curse of dimensionality. They have a high dimensional features due
to high temporal resolution as well as significant challenge with
low signal-to-noise ratio. Recently, deep learning methods have
shown substantial promise for brain signal decoding. Further, the
examples for training in EEG datasets are considerably smaller than
is typical of most deep learning architectures.

Neurotechnology leverages the availability of relatively inex-
pensive, portable, and readily available wireless EEG headsets to
train novice meditators to meditate. Recent EEG mobile applica-
tions [1, 2] enable the meditator to monitor their meditation in
real time. The illustration shown in figure 1 presents the exemplar
explaining our findings that could be used in the application to
guide the practitioner to achieve expert-level stages by continuing
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the practice. Neurotechnology allows researchers to work together
and establish the neural correlates of varying meditation stages
through the collaboration of cognitive scientists, computer scien-
tists, and signal-processing researchers, enabling the analysis of
neural activity for meditation.

Figure 1: Exemplar machine learning enabled EEG applica-
tion facilitating practitioners to observe the changes after
daily practice and changes in brain activity concerning ex-
pert meditators.

Researchers have modeled the generated EEG signals into two
cases: within-subject and cross-subject. Within-subject means us-
ing the signals of the same individual for training and testing the
model. This case significantly improves accuracy and enables us to
identify individualized neural responses. Cross-Subject modeling,
also known as a subject-invariant representation of EEG signals,
refers to identifying a common neural signature for a cognitive pro-
cess across several participants. Transfer learning of EEG data is a
popular challenge pertaining to invariant representation [21]. This
is a challenging issue primarily because the brain representation of
different higher-order cognitive processes differs among individuals
due to synaptic plasticity and interactions with the environment.
Despite these complexities, the brain-computer interface’s computa-
tional society is interested in capturing the shared dynamics across
subjects for an activity. EEG is a widely used technique to capture
the electrical activity of the brain due to its ease of use, low opera-
tional costs, non-invasive properties, and high temporal precision.
EEG systems also allow us to record brain activity in the laboratory
setting and out in the environment to demonstrate the ecological
validity of EEG studies. A significant disadvantage of EEG is that
it has a low signal-to-noise ratio (SNR). This allows researchers to
design new and sophisticated algorithms to denoise, decode and
derive insights from EEG signals. This study attempts to identify a
personalized and shared neural representation of meditation among
different meditation traditions.

Decades of neuroscientific research on meditation have already
established the several benefits of meditation such as increased gray
matter density in the brain stem [33], reduction of anxiety [20], reg-
ulation of emotion and attention [3, 18], control over post-traumatic
stress disorder (PTSD), and depression symptoms [12, 13], enhanced
attention span [15], pain control [4, 11], effectiveness for addiction
prevention and treatment and multiple physical and emotional
health benefits. There are different styles of meditation, such as
Himalayan yoga (Focused Attention), Vipassana (Open Monitor-
ing) and Isha Shoonya (Open Awareness Meditation), and Loving

Kindness Meditation.

We have used a public dataset, originally collected by Braboszcz
et al. [6]. In their work, they have discussed an increase in gamma
activity in expert meditators of around 60 - 110Hz (Himalayan Yoga,
Isha Shoonya, and Vipassana) when compared to control group
meditators. Vivot et al. [34] noted an increased gamma band entropy
in Vipassana meditators and an overall increase in global coher-
ence among expert meditators from all traditions. Van Doorn et al.
[32] found that breath-awareness meditation and instructed mind-
wandering possessed different functional connectivity. We have
extended these works by finding the differences and similarities
between expert and non-expert meditators and across meditation
traditions.

In this work, we train personalized and generalized models to
differentiate EEG activity elicited while practicing meditation and
instructed mind-wandering. To the best of our knowledge, this is
the first time that an article presents a detailed analysis delving
into three meditation traditions using various machine learning
classifiers. The novelty of this work lies into incorporating different
meditation and their detailed experimentation specially on cross-
subject/cross-tradition generalization.

2 MOTIVATION
Non-invasive neuro sensors record brain activity to pass through
signal processing techniques and advanced pattern recognition to
decode human intentions. Some techniques, such as P300 speller
that uses time domain event-related potentials, and Steady State
Visual Evoked Potential (SSVEP), which are frequency domain-
based devices, have proven beneficial to people with disabilities
like tetraplegia, muscle atrophy, stroke, etc [17]. It helps them com-
municate with the outside world when they physically cannot.
These devices measure the participant’s brain activity and eventu-
ally help them type characters. However, these devices are often
inaccurate, have low information transfer rates (ITR), and have a
long training time per participant.

2.1 Cognitive Relevance
We can find numerous meditation techniques to improve attention
and emotional response [19]. There are both short-term and long-
term cognitive benefits to meditation practice [6]. In the short-term,
studies have shown that meditation can help with attention and
focus, working memory, and reaction times. In the long-term, medi-
tation has been shown to improve cognitive function in older adults,
and those with Alzheimer’s and dementia [9, 14]. Meditation may
also help to protect the brain from age-related decline. Different
meditation styles have different benefits. Focused attention medita-
tion is when you focus your attention on a certain object, such as
your breath, a mantra, or a certain sound. This type of meditation
can help one to focus and concentrate more easily, as well as calm
your mind and body. Open monitoring meditation is when you
become aware of your thoughts and emotions without judgment
or attachment. This type of meditation can help you become more
aware of your thoughts and emotions, as well as become more ac-
cepting of them. Loving-Kindness meditation is when you focus on
sending positive thoughts and emotions, such as love, compassion,
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and forgiveness, to yourself and others. This type of meditation can
help you become more compassionate and loving towards yourself
and others.

2.2 Learning Representation
Feature engineering is a critical step in machine learning and can
significantly impact a learning algorithm’s performance. A compu-
tation model of meditation based on feature extraction of real-time
signals can help the practitioner to get feedback and check their
performance. Recently, there has been a surge in the development
of machine learning models for meditation due to the availability
of wearable EEG headsets for consumer use. Identifying differences
between expert and non-expert have been in the rise of explo-
ration using machine learning with signal processing techniques
[10, 23–27]. Pre- and post-changes after a few weeks of practice
are the quickest way to observe the effects with interpretability.
SHAP explainable machine learning model is employed to identify
the regions of change after mindfulness sessions [28]. An exten-
sive spectrum of meditation-related mental states is discussed and
further classified in a recent review paper [16]. The discovery of
patterns that can be used in systems to guide naive practitioners
brings enormous opportunities for cognitive, signal processing,
and machine learning scientists. Along with this, mind-wandering
detection is an interesting research area for feature engineering [8].

3 DATASET DESCRIPTION
We used the dataset curated by Braboszcz et al. [6] which contains
electroencephalographic (EEG) activity of meditation practition-
ers (across three different meditation traditions – Vipassana (VIP),
Himalayan Yoga (HYT), and Isha Shoonya (SNY) and a control
(no prior meditation experience) group (CTR) during a meditative
and instructed mind-wandering block. The data was collected at
the Meditation Research Institute (MRI) in Rishikesh, India. The
EEG data contains 64 channels, and 16 subjects were selected for
each meditation technique group, making it overall 64 subjects. The
EEG data is sampled at 256Hz. The time duration for each subject
varies, so we crop the dataset for each subject to a specific minimum
duration. We observe one significant outlier subject in the mind-
wandering dataset and three significant outliers in the meditation
dataset, which we remove from the corresponding datasets. Even-
tually, the dataset for each subject is cropped to 110976 timesteps
in the mind-wandering and 111872 timesteps in the meditation
dataset.

4 METHODOLOGY
4.1 Experimental Setup
We split the EEG data for each subject into ten-second chunks (2560
timesteps in each chunk) with overlaps of five seconds to create a
sequence of time splits. We average the timestamp inputs for each
64 channels to create the features. These features are then fed into
various classifiers (details in subsection 4.2). Our experiments on
meditation and mind-wandering classification are conducted in two
settings:

Figure 2: This figure shows howwe created thewithin-subject
data split with a 10-second window and a 5-second overlap.
We randomly split windows into the train, validation, and
test sets.

(1) Within-subject: The time splits for each user are randomly
selected into the train, validation, or test split in the ratio
60-20-20 as shown in Figure 2.

(2) Cross-subject: This strategy selects 10-3-3 participants in
the train-val-test set, and all the time chunks for that user
are used in the corresponding data fold as shown in Figure 3.

We create five samples of train-val-test, wherein in each run, the
validation fold is used for hyperparameter tuning, and the results
(mean macro accuracy and standard deviation) are reported on the
test folds. In the cross-subject case, we ensured that different users
were in the test split in each of the five samples of the train-val-test.

4.2 Classifiers and Hyperparameter Tuning
The input space is constructed by averaging the EEG time series of
64 channels. To understand the distribution of input vectors in the
reprsentation space, we employ linear as well as non-linear classi-
fiers. Linear models for classification learn decision boundaries that
are linear functions of the input, while nonlinear classifiers are ef-
fective when the classes cannot be separated via linear hyperplanes.
We estimate the performance of models using the resampling strat-
egy. We use 5-fold cross validation to select the best parameters.
We experiment with around thirteen traditional machine learning
classifiers and report average accuracies of 5 runs. We use Grid
Search for hyperparameter tuning. The grid search method does
an exhaustive search of hyperparameters over a specified range
of hyperparameter values. We report the configurations and the
search range for each model hyperparameter in Table 1.

5 RESULTS
The current dataset consists of meditation and mind-wandering
performed by practitioners from 3 different meditation traditions -
Vipassana (VIP), Himalayan Yoga (HYT), and Isha Shoonya (SNY).
We also have a control group (CTR), with 64-channel EEG data. As
described in the above sections, we performed within-subject and
cross-subject analyses for meditation and mind-wandering in the
following conditions:

(1) Control vs. Expert (CTR / EXP): We classify whether the
test data point belongs to the control or expert participant.



ICVGIP’22, December 8–10, 2022, Gandhinagar, India

Classifier Hyperparameter Grid Search Range
Decision Tree (DT) Maximum depth [2, 12, 22, ... 62]

Random Forest (RF) Num of estimators [5, 25, 45, ... 85]
Maximum depth [2, 12, 22, ... 62]

Logistic Regression (LR) Maximum Iterations 500
Solver newton-cg, lbfgs, sag, saga

Logistic Regression
+ L1 Regularization (LR-L1)

Maximum Iterations 500
Solver liblinear, saga

Logistic Regression
+ L2 Regularization (LR-L2)

Maximum Iterations 1000
Solver newton-cg, lbfgs, liblinear, sag, saga

SVC Linear (SVC-L) Kernel Linear
C [0.5, 1.5, 2.5]

SVC Polynomial (SVC-P)

Kernel Polynomial
C [0.5, 1.5, 2.5]

Degree [3, 4, 5]
Gamma scale, auto

SVC Others (SVC-O)
Kernel RBF, Sigmoid

C [0.5, 1.0, 1.5, 2.0, 2.5]
Gamma scale, auto

kNN Num neighbours [3, 4, 5, ... 30]
Ridge Classifier (RC) Maximum Iterations 1000

Gaussian Naive Bayes (GNB) - -

Bagging SVC (B-SVC)

Num of estimators [5, 25, 45, ... 85]
SVC Kernel Linear, Polynomial

SVC Degree (Poly) [3, 4, 5]
SVC Gamma scale, auto

Bagging DT (B-DT) Num of estimators [5, 25, 45, ... 85]
DT Max depth [2, 5, 10]

Ada Boost (AB) Num of estimators [10, 30, 50, ... 90]
DT Max depth [2, 5, 12]

Extra Trees (ET) Num of estimators [5, 35, 65, ... 105]
Max Depth [2, 5, 10, 15]

Multi Layer Perceptron (MLP)

Hidden layer size [50, 250, 450, ... 650]
Num of layers 1, 2
Activation logistic, tanh, relu
Solver adam, sgd

Early Stopping True
Table 1: Configurations and grid search range for hyperparameter tuning for each model.

(2) Control vs. Himalayan Yoga vs. Isha Shoonya vs. Vipas-
sana (CTR / HYT / SYN / VIP): 4-class classification of
whether the participant belongs to control, Himalayan Yoga,
Vipassana, or Isha Shoonya.

(3) Control vs. Himalayan Yoga (CTR / HYT): 2-class clas-
sification to determine whether the participant belongs to
control or Himalayan Yoga.

(4) Control vs. Isha Shoonya (CTR / SYN): 2-class classifica-
tion to determine whether the participant belongs to control
or Isha Shoonya.

(5) Control vs Vipassana (CTR / VIP): 2-class classification
to determine whether the participant belongs to control or
Vipassana.

(6) Transfer Learning: Training the model on control plus
one expert meditation type (say X) and testing the model
on the other two expert meditation types (say Y and Z) (2-
class classification between CTR and Y+Z). We denote this
setting as (CTR / (X –> Y+Z)). For example, CTR / (HYT –>
SYN+VIP) denotes that the model was trained on CTR vs

HYT classification, and then tested on CTR vs (SYN+VIP)
classification.

5.1 Within-subject
Here we show the classification accuracy of different classifiers on
different classification tasks as mentioned in Section 5. We trained
and tested on other chunks generated for all subjects as mentioned
in Section 4.1.

5.1.1 Meditation. As shown in Figure 4, most machine learning
classifiers generalized well for non-transfer-learning conditions
with accuracies nearing 100%. However, when we see the transfer
learning conditions (for example, CTR / (HYT –> SNT+VIP), we
can see that the generalisability is less among different models. For
testing on:

(1) SNY+VIP condition, KNN classifiers performed best with
74.3% classification accuracy.

(2) HYT+VIP condition, Logistic Regression with L1 regular-
izer performed best with 73% classification accuracy.
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Figure 3: This figure shows how we created the cross-subject
data split with initial splits of a 10-second window and a
5-second overlap for each participant. We then split the par-
ticipants’ chunks for the train-val-test set using the 10-3-3
rule.

(3) HYT+SNY condition, Support Vector Machine performed
best with 80.4% classification accuracy.

Key Findings: The significantly higher accuracy of transfer
learning models over chance level shows there are common neural
signatures between novice and expert meditators of Himalayan
Yoga, Isha Shoonya, and Vipassana.

5.1.2 mind-wandering. As shown in Figure 5, most machine learn-
ing classifiers generalized well for non-transfer-learning conditions

with accuracies nearing 100%. However, when we know the transfer
learning conditions (for example, CTR / (HYT –> SNY+VIP), we can
see that the generalisability is less among different models. The Sup-
port Vector Machine worked best for testing on SNY+VIP (trained
on HYT), HYT+VIP (trained on SNY), and HYT+SYN (trained on
VIP) conditions with classification accuracies of 84%, 80.7%, and
83.1%, respectively.

Key Findings: Here also we can see that transfer learning pro-
duced significantly higher accuracy over chance level indicating
common neural signatures among novice and expert meditators
while their minds wander.

5.2 Cross-subject
Here we show the classification accuracy of different classifiers on
different classification tasks as mentioned in Section 5. We trained
on chunks of 10 participants and validated and tested on chunks of
3 participants each, as discussed in Section 4.1.

5.2.1 Meditation. Compared to within-subject classification, the
models faced difficulty generalizing for cross-subject predictions.
Condition-wise classification results are as follows:

(1) Control vs. Expert (CTR / EXP ): Polynomial Support
Vector Machines performed the best with an increase of 7%
over the chance level.

(2) Control vs Himalayan Yoga vs Isha Shoonya vs Vipas-
sana (CTR / HYT / S / V): Decision tree with bagging
achieved the highest classification accuracy with a 6.3% in-
crease over the chance level (25%).

(3) Control vs Himalayan Yoga (CTR / HYT ): Neural Net-
work achieved the highest classification accuracy with a 5.3%
increase over the chance level (50%).

(4) Control vs Isha Shoonya (CTR / SYN): Decision tree
achieved the highest classification accuracy with an 18.3%
increase over the chance level (50%).

(5) Control vs Vipassana (CTR / VIP): Polynomial Support
Vector Machines achieved the highest classification accuracy
with an 8.2% increase over the chance level (50%).

(6) SYN+VIP condition, Gaussian Naive Bayes achieved the
highest classification accuracy with a 9.4% increase over the
chance level (50%).

(7) HYT+VIP condition, Polynomial Support Vector Machines
achieved the highest classification accuracy with a 9.2% in-
crease over the chance level (50%).

(8) HYT+SYN condition, Gaussian Naive Bayes achieved the
highest classification accuracy with an 11.3% increase over
the chance level (50%).

Key Findings: As shown in Figure 6, most other models could
not generalize well with a decrease in performance below chance
levels. However, we see clear classifiability between control and
Isha Shoonya meditators indicating varied neural patterns.

5.2.2 mind-wandering. Compared to within-subject classification
and similar to the meditation data-set, the models faced difficulty
generalizing for cross-subject predictions. Condition-wise classifi-
cation results are as follows:



ICVGIP’22, December 8–10, 2022, Gandhinagar, India

Figure 4: This figure shows the performance of different machine learning classifiers in the classification tasks mentioned in
Section 5 on the meditation dataset. This has been done using a within-subject data split.

Figure 5: This figure shows the performance of different machine learning classifiers in the classification tasks mentioned in
Section 5 on the mind-wandering dataset. This has been done using a within-subject data split.

(1) Control vs. Expert (CTR / EXP ): KNN classifier per-
formed the best with an increase of 6.1% over the chance
level.

(2) Control vs. Himalayan Yoga vs. Isha Shoonya vs. Vipas-
sana (CTR / HYT / S / V): Polynomial Support Vector
Machines achieved the highest classification accuracy with
a 9.9% increase over the chance level (25%).

(3) Control vs. Himalayan Yoga (CTR / HYT ): Polynomial
Support Vector Machines achieved the highest classification
accuracy with a 9.3% increase over the chance level (50%).

(4) Control vs. Isha Shoonya (CTR / SYN): Ridge classifier
achieved the highest classification accuracy with a 15.4%
increase over the chance level (50%).
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Figure 6: This figure shows the performance of different machine learning classifiers in the classification tasks mentioned in
Section 5 on the meditation dataset. This has been done using a cross-subject data split.

Figure 7: This figure shows the performance of different machine learning classifiers in the classification tasks mentioned in
Section 5 on the mind-wandering dataset. This has been done using a cross-subject data split.
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Figure 8: This figure shows the best classifiers for all conditions in meditation and mind-wandering dataset and their improve-
ment over respective chance levels.

(5) Control vs Vipassana (CTR / VIP): Polynomial Support
Vector Machines achieved the highest classification accuracy
with an 18% increase over the chance level (50%).

(6) SYN+VIP condition, Polynomial Support Vector Machines
achieved the highest classification accuracy with a 13.9%
increase over the chance level (50%).

(7) HYT+VIP condition, Random forest achieved the highest
classification accuracy with a 6.3% increase over the chance
level (50%).

(8) HYT+SYN condition, Polynomial Support Vector Machines
achieved the highest classification accuracy with a 14.8%
increase over the chance level (50%).

Key Findings: As we can see in Figure 7, most of the other mod-
els in mind-wandering could generalize well, unlike the meditation
data-set with a less frequent decrease in performance below chance
levels. We see high classification accuracy for classification between
control and individual expert meditators, indicating different neural
patterns between control and the rest of the meditation traditions.

In Figure 8, we have shown the best models for meditation and
mind-wandering for different conditions.

6 CONCLUSION
Our findings indicate that there are different neural signatures
between novice and expert meditators during meditation and mind-
wandering as shown by transfer learning results in figures 4, 5. We
can also observe from figures 6, 7 that there are clear distinctions
between individual expert and novice meditators that can be gen-
eralized over all participants. We propose a system for guiding a
novice meditator to obtain and sustain mindful moments. In our
future work, we would provide real-time neuro-feedback and show
the progress of practitioner over time. We do this by incorporating
personalized and generalized models of brain oscillatory activity
[34] in comparison to experts (figure 1).

Focusing on the meditation object instead of mind-wandering
leads to progress in reaching the meditative state. Our article differ-
entiates the neural signature between expert and novice meditators
comprising two conditions (i) meditating and (ii) mind-wandering.
We develop personalized (within-subject) and generalized (cross-
subject) models classifying six binary sets between two groups. Our
findings reveal that personalized models learn features effectively
and recent work emphasizes learning individualized evolution of
stages[5]. We achieve maximum accuracy in classifying the within-
subject and above 18% of chance level in cross-subject analysis. The
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accuracy could also drive us to spend more time learning the repre-
sentation for cross-subject/cross-tradition. This study also include
limitations and can be refined in further works.

Although more work is required to find the near-perfect general
model, our work shows common neural patterns among different
meditation traditions. This research provides a significant step to-
ward bringing ancient wisdom to the forefront of Neurotechnology
for monitoring brain health and maintaining wellness.
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